68 research outputs found

    Cytological and proteomic analyses of horsetail (Equisetum arvense L.) spore germination

    Get PDF
    Spermatophyte pollen tubes and root hairs have been used as single-cell-type model systems to understand the molecular processes underlying polar growth of plant cells. Horsetail (Equisetum arvense L.) is a perennial herb species in Equisetopsida, which creates separately growing spring and summer stems in its life cycle. The mature chlorophyllous spores produced from spring stems can germinate without dormancy. Here we report the cellular features and protein expression patterns in five stages of horsetail spore germination (mature spores, rehydrated spores, double-celled spores, germinated spores, and spores with protonemal cells). Using 2-DE combined with mass spectrometry, 80 proteins were found to be abundance changed upon spore germination. Among them, proteins involved in photosynthesis, protein turnover, and energy supply were over-represented. Thirteen proteins appeared as proteoforms on the gels, indicating the potential importance of post-translational modification. In addition, the dynamic changes of ascorbate peroxidase, peroxiredoxin, and dehydroascorbate reductase implied that reactive oxygen species homeostasis is critical in regulating cell division and tip-growth. The diverse expression patterns of proteins in photosynthesis, energy supply, lipid and amino acid metabolism indicated that heterotrophic and autotrophic metabolism were necessary in light-dependent germination of the spores. Twenty-six proteins were involved in protein synthesis and fate, indicating that protein turnover is vital to spore germination. Furthermore, the altered abundance of small G protein Ran, 14-3-3 protein, actin, and Caffeoyl-CoA O-methyltransferase revealed that signaling transduction, vesicle trafficking, cytoskeleton dynamics, and cell wall modulation were critical to cell division and polar growth. These findings lay a foundation toward understanding the molecular mechanisms underlying fern spore asymmetric division and rhizoid polar growth

    Understanding, Categorizing and Predicting Semantic Image-Text Relations

    Full text link
    Two modalities are often used to convey information in a complementary and beneficial manner, e.g., in online news, videos, educational resources, or scientific publications. The automatic understanding of semantic correlations between text and associated images as well as their interplay has a great potential for enhanced multimodal web search and recommender systems. However, automatic understanding of multimodal information is still an unsolved research problem. Recent approaches such as image captioning focus on precisely describing visual content and translating it to text, but typically address neither semantic interpretations nor the specific role or purpose of an image-text constellation. In this paper, we go beyond previous work and investigate, inspired by research in visual communication, useful semantic image-text relations for multimodal information retrieval. We derive a categorization of eight semantic image-text classes (e.g., "illustration" or "anchorage") and show how they can systematically be characterized by a set of three metrics: cross-modal mutual information, semantic correlation, and the status relation of image and text. Furthermore, we present a deep learning system to predict these classes by utilizing multimodal embeddings. To obtain a sufficiently large amount of training data, we have automatically collected and augmented data from a variety of data sets and web resources, which enables future research on this topic. Experimental results on a demanding test set demonstrate the feasibility of the approach.Comment: 8 pages, 8 Figures, 5 table

    Unraveling the mechanisms of intervertebral disc degeneration: an exploration of the p38 MAPK signaling pathway

    Get PDF
    Intervertebral disc (IVD) degeneration (IDD) is a worldwide spinal degenerative disease. Low back pain (LBP) is frequently caused by a variety of conditions brought on by IDD, including IVD herniation and spinal stenosis, etc. These conditions bring substantial physical and psychological pressure and economic burden to patients. IDD is closely tied with the structural or functional changes of the IVD tissue and can be caused by various complex factors like senescence, genetics, and trauma. The IVD dysfunction and structural changes can result from extracellular matrix (ECM) degradation, differentiation, inflammation, oxidative stress, mechanical stress, and senescence of IVD cells. At present, the treatment of IDD is basically to alleviate the symptoms, but not from the pathophysiological changes of IVD. Interestingly, the p38 mitogen-activated protein kinase (p38 MAPK) signaling pathway is involved in many processes of IDD, including inflammation, ECM degradation, apoptosis, senescence, proliferation, oxidative stress, and autophagy. These activities in degenerated IVD tissue are closely relevant to the development trend of IDD. Hence, the p38 MAPK signaling pathway may be a fitting curative target for IDD. In order to better understand the pathophysiological alterations of the intervertebral disc tissue during IDD and offer potential paths for targeted treatments for intervertebral disc degeneration, this article reviews the purpose of the p38 MAPK signaling pathway in IDD

    A potential relationship between MMP-9 rs2250889 and ischemic stroke susceptibility

    Get PDF
    PurposeIschemic stroke (IS), a serious cerebrovascular disease, greatly affects people's health and life. Genetic factors are indispensable for the occurrence of IS. As a biomarker for IS, the MMP-9 gene is widely involved in the pathophysiological process of IS. This study attempts to find out the relationship between MMP-9 polymorphisms and IS susceptibility.MethodsA total of 700 IS patients and 700 healthy controls were recruited. The single nucleotide polymorphism (SNP) markers of the MMP-9 gene were genotyped by the MassARRAY analyzer. Multifactor dimensionality reduction (MDR) was applied to generate SNP–SNP interaction. Furthermore, the relationship between genetic variations (allele and genotype) of the MMP-9 gene and IS susceptibility was analyzed by calculating odds ratios (ORs) and 95% confidence intervals (CIs).ResultsOur results demonstrated that rs2250889 could significantly increase the susceptibility to IS in the codominant, dominant, overdominant, and log-additive models (p < 0.05). Further stratification analysis showed that compared with the control group, rs2250889 was associated with IS risk in different case groups (age, female, smoking, and non-drinking) (p < 0.05). Based on MDR analysis, rs2250889 was the best model for predicting IS risk (cross-validation consistency: 10/10, OR = 1.56 (1.26–1.94), p < 0.001).ConclusionOur study preliminarily confirmed that SNP rs2250889 was significantly associated with susceptibility to IS
    • …
    corecore